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1. Fourier Transform

Fourier series expansion in general works for periodic functions. For functions defined
on the real line possessing some decay properties (so they are not periodic) the analogous
expansion is called the Fourier transform of the function. Previously we discussed Fourier
series from the mapping point of view. It is advantageous to recall it. Indeed, we set

R2π = {All 2π-periodic, Riemann integrable complex-valued functions} ,

C∞2π = { All 2π-periodic, infinitely differentiable functions} ,

S0 = {{cn} : cn → 0, as n→ ±∞} ,

and
Srd = {{cn} ∈ S0 : {cn} is rapidly decreasing } .

It is more convenient to consider complex-valued functions when coming to Fourier trans-
form. Given f ∈ R2π, its “Fourier transform” Φ is

Φ(f) = {cn}, cn =
1

2π

ˆ π

−π
f(x)e−inxdx, n ∈ Z .

The Fourier transform Φ establishes a map from the space R2π to S0, as a result of
Riemann-Lebesgue Lemma. On the other hand, the inverse Fourier transform Ψ is given
by

Ψ({cn}) =
∞∑

n=−∞

cne
inx .

However, due to the difficulty of convergence, Ψ is not well-defined for every bisequences
in S0. In order to obtain a one-to-one correspondence, we restrict our attention to the
subspace Srd consisting of rapidly decreasing bisequences so that Ψ({cn}) is always well-
defined. Indeed, we showed that

Ψ ◦ Φ = Id on C∞2π, and Φ ◦Ψ = Id on Srd.

Therefore, the Fourier transform sets up a one-to-one correspondence between C∞2π and
Srd.

Now, let us consider functions defined on R, that is, the whole real line. We call a
function f absolutely Riemann integrable if it is (improperly) Riemann integrable on
any [a, b] and both

lim
a→−∞

ˆ 0

a

|f(x)|dx

and

lim
b→∞

ˆ b

0

|f(x)|dx
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exist. For such f we setˆ ∞
−∞

f(x)dx = lim
a→−∞

ˆ 0

a

f(x)dx+ lim
b→∞

ˆ b

0

f(x)dx .

We will denote the class of all absolutely Riemann integrable functions by R(R) or
R(−∞,∞). Clearly it carries the structure of a vector space over C.

For every absolutely integrable function f on R, we define its Fourier transform to
be

F(f)(ξ) =

ˆ ∞
−∞

f(x)e−iξxdx .

Usually we use f̂ or f̂(ξ) to denote F(f). The new variable ξ is x in Greek.

Proposition 8.1. For f ∈ R(R), f̂ is continuous on R and satisfies

lim
|ξ|→∞

f̂(ξ) = 0 .

The decay of f̂ at infinity is the analog of the Riemann-Lebesgue Lemma.

Proof. Let f = f1 + if2 where f1 and f2 are respectively the real and imaginary parts of
f . We have

f̂(ξ) =

ˆ ∞
−∞

f1(x) cos ξxdx+

ˆ ∞
−∞

f2(x) sin ξxdx

−i
ˆ ∞
−∞

f1(x) sin ξxdx+ i

ˆ ∞
−∞

f2(x) cos ξxdx .

Let us show that the first integral on the right hand side is continuous in ξ. For ξ0 ∈ R,
we fix a large M such that ˆ

|x|≥M
|f1(x)|dx < ε

4
.

Then∣∣∣∣ˆ ∞
−∞

f1(x) cos ξxdx−
ˆ ∞
−∞

f1(x) cos ξ0xdx

∣∣∣∣ ≤ ∣∣∣∣ˆ M

−M
f1(x)(cos ξx− cos ξ0x)dx

∣∣∣∣
+

∣∣∣∣ˆ
|x|≥M

f1(x)(cos ξx− cos ξ0x)dx

∣∣∣∣
≤

∣∣∣∣ˆ M

−M
f1(x)(cos ξx− cos ξ0x)dx

∣∣∣∣+

2

∣∣∣∣ˆ
|x|≥M

f1(x)dx

∣∣∣∣
<

∣∣∣∣ˆ M

−M
f1(x)(cos ξx− cos ξ0x)dx

∣∣∣∣+
ε

2
.
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By Mean-Value Theorem, we have

cos ξx− cos ξ0x = −(sin ξ′x)(ξ − ξ0)x ,

where ξ′ lies between ξ and ξ0. It follows that∣∣∣∣ˆ
|x|≤M

f1(x)(cos ξx− cos ξ0x)dx

∣∣∣∣ ≤M |ξ − ξ0|
ˆ
|x|<M

|f1(x)|dx .

We can find a small δ > 0 such that Whenever |ξ − ξ0| < δ,∣∣∣∣ˆ
|x|≥M

f1(x)(cos ξx− cos ξ0x)dx

∣∣∣∣ < ε

2
.

Putting things together, we have shown that the first integral term in f̂ is continuous
everywhere. By the same reasoning the other three integrals are continuous.

To prove the decay property, again we examine the first integral and fix the same large
M above. Then∣∣∣∣ˆ ∞

−∞
f1(x) cos ξxdx

∣∣∣∣ ≤ ∣∣∣∣ˆ M

−M
f1(x) cos ξxdx

∣∣∣∣+

∣∣∣∣ˆ
|x|≥M

f1(x) cos ξxdx

∣∣∣∣
≤

∣∣∣∣ˆ M

−M
f1(x) cos ξxdx

∣∣∣∣+
ε

4
.

Following the proof of Riemann-Lebesgue Lemma (simply replacing n by ξ), one can
show that the integral above tends to 0 as ξ →∞. Similarly we can treat the other three
integrals.

This proposition suggests the image of Fourier transform should be taken to be the
space

C0(R) ≡
{
ϕ ∈ C(R) : lim

ξ→±∞
ϕ(ξ) = 0

}
.

We note that R(R) and C0(R) correspond to R2π and S0 in Fourier series.

To find the inverse Fourier transform a formal argument (see next section) suggests
that it is given by

G(ϕ)(x) =
1

2π

ˆ ∞
−∞

ϕ(ξ)eiξxdξ . (1)

It is not hard to see that this map is well-defined when ϕ is absolutely integrable. Unfor-
tunately, it is not clear and actually not true that it is well-defined for functions in C0(R).
For instance, the function (1 + x2)−1/2 belongs to C0(R) but not in R(R). Thus we are in
the same situation of Fourier series. We need to restrict the classes of functions in order
to define the inverse Fourier transform. To this end we introduce the Schwartz class of
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functions. A (complex-valued) function is called rapidly decreasing if it is infinitely
differentiable and satisfies, for each k, j,

sup
x∈R
|x|k|f (j)(x)| <∞.

Examples of rapidly decreasing functions include all infinitely differentiable function which
vanish outside some bounded interval and notably the function x 7→ e−ax

2
, a > 0. The

collection of all rapidly decreasing functions form a vector space called Schwartz space
S(R). Notice that its decay property shows that differentiation and multiplication of a
polynomial are closed operations inside S(R).

Proposition 8.2. Under the Fourier transform, the following correspondence holds for
f ∈ S(R),

(a) f(x+ h) −→ f̂(ξ)eihξ, h ∈ R .

(b) f(x)e−ixh −→ f̂(ξ + h).

(c) f(δx) −→ δ−1f̂(δ−1ξ), δ > 0 .

(d) f ′(x) −→ iξ f̂(ξ).

(e) −ixf(x) −→ (df̂/dξ)(ξ) .

Proof. (a)-(c) are straightforward. To prove (d) we start with definition

f̂ ′(ξ) =

ˆ ∞
−∞

f ′(x)e−ixξdx

= lim
M→∞

ˆ M

−M
f ′(x)e−ixξdx

= lim
M→∞

f(x)e−ixξ
∣∣∣M
−M

+ iξ

ˆ M

−M
f(x)e−ixξdx

= iξ

ˆ ∞
−∞

f(x)e−ixξdx

= iξf̂(ξ) .

To prove (e), a formal proof is straightforward. To do a rigorous one, we need to start
with the definition of differentiation∣∣∣∣∣ f̂(ξ + h)− f̂(x)

h
− (−̂ixf)(ξ)

∣∣∣∣∣
=

ˆ ∞
−∞

f(x)e−ixξ
(
e−ixh − 1

h
+ ix

)
dx .



5

We have
e−ixh − 1

h
+ ix =

cosxh− 1

h
− i
(

sinxh

h
− x
)
.

Using | cosxh− 1| ≤ (xh)2/2 and | sinxh/h| ≤ |x| and the integrability of xf(x) we could
fix a large M such that∣∣∣∣ˆ

|x|≥M
f(x)e−ixξ

(
e−ixh − 1

h
+ ix

)
dx

∣∣∣∣ < ε

2
.

Now, as

lim
h→0

cosxh− 1

h
= 0 , and lim

h→0

sinxh

h
= x ,

uniformly on [−M,M ], we can find some δ > 0 such that∣∣∣∣cosxh− 1

h
− i
(

sinxh

h
− x
)∣∣∣∣ < ε

2K
, ∀x ∈ [−M,M ] ,

where

K =

ˆ M

−M
|f(x)|dx .

∣∣∣∣ˆ
|x|≤M

f(x)e−ixξ
(
e−ixh − 1

h
+ ix

)
dx

∣∣∣∣ < K × ε

2K
=
ε

2
.

Hence we conclude ∣∣∣∣∣ f̂(ξ + h)− f̂(x)

h
− (−̂ixf)(ξ)

∣∣∣∣∣ < ε , |h| < δ .

From this proposition, especially (d) and (e), we deduce

Corollary 8.3. The Fourier transform maps S(R) to S(R).

Everything looks fine so far. But, nothing is perfect. When it comes to computation,
we find that usually Fourier transform is difficult to carry out. This is partly because most
elementary functions, such as polynomials and trigonometric functions, do not decay to
infinity. Here we only give one example.

Let’s compute the Fourier transform of the function exp(−ax2), a > 0. We need to
evaluate the integral ˆ ∞

−∞
e−ax

2

e−ixξdx.
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By completing square,

−ax2 − ixξ = −a
(
x2 +

iξx

a

)
= −a

(
x+

iξ

2a

)2

− ξ2

4a
.

Therefore,

ˆ ∞
−∞

e−ax
2−ixξdx

= e−
ξ2

4a

ˆ
e−a(x+

iξ
2a

)2dx

=

√
1

a
e−

ξ2

4a

ˆ
e−y

2

dy

=

√
π

a
e−

ξ2

4a ,

after using the formula ˆ
e−y

2

dy = π1/2 .

For simplicity we have dropped the lower and upper limits in the above integrals. We
conclude that

F (e−ax
2

)(ξ) =

√
π

a
e−

ξ2

4a .

In particular,

F (e−x
2/2)(ξ) =

√
2πe−ξ

2/2.

Using the Fourier transform of e−x
2/2 in a tricky way, one can establish the following

inversion theorem.

Theorem 8.4. The Fourier transform F maps S(R) one-to-one onto itself with inverse
map given by the inverse Fourier transform G in (1).

See, p. 139-142 in [SS] for details.

2. Derivation of The Inverse Transform We conclude this lecture with a formal
derivation of the inversion theorem. It is included here for optional reading.

Let’s take f to be a function on the real line, so nice that it is smooth and vanishes
outside some bounded interval. For each sufficiently large l that f is equal to zero outside
[−l, l] we may extend the restriction of f on [−l, l] to be a 2l-periodic function in R.
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Denoting this extension still by f , we have the Fourier expansion:

f(x) =
a0
2

+
∞∑
k=1

(
ak cos

kπx

l
+ bk sin

kπx

l

)
, x ∈ [−l, l]

=
1

2l

ˆ l

−l
f(y)dy +

∞∑
k=1

(
1

l

ˆ l

−l
f(y) cos

kπy

l
cos

kπx

l
dy +

1

l

ˆ l

−l
f(y) sin

kπy

l
sin

kπx

l
dy

)
=

1

2l

ˆ l

−l
f(y)dy +

∞∑
k=1

1

l

ˆ l

−l
f(y) cos

kπ

l
(y − x)dy

=
1

2l

ˆ ∞
−∞

f(y)dy +
∞∑
k=1

1

l

ˆ ∞
−∞

f(y) cos
kπ

l
(y − x)dy. (2)

The last line holds because f vanishes outside [−l, l]. On the other hand, the function

φ(ξ) =

ˆ ∞
−∞

f(y) cos ξ(y − x)dy

is well-defined on R. We consider its integration over [0,∞), i.e.,

ˆ ∞
0

φ(ξ)dξ =

ˆ ∞
0

ˆ ∞
−∞

f(y) cos ξ(y − x)dydξ,

where x is fixed. This integral can be approximated by its Riemann sums. More precisely,
we partition R into subintervals [0, π/l], [π/l, 2π/l], · · · , and pick ξk = kπ/l to form

∞∑
k=1

φ(
kπ

l
)
π

l
=
∞∑
k=1

π

l

ˆ ∞
−∞

f(y) cos
kπ

l
(y − x)dy.

We see that
∞∑
k=1

π

l

ˆ ∞
−∞

f(y) cos
kπ

l
(y − x)dy

tends to ˆ ∞
0

ˆ ∞
−∞

f(y) cos ξ(y − x)dy,

as l→∞. As the cosine function is even, this limit can be expressed as

1

2

ˆ ∞
−∞

ˆ ∞
−∞

f(y) cos ξ(x− y)dydξ.

Using the oddity of the sine function, it can further be written as

1

2

ˆ ∞
−∞

ˆ ∞
−∞

f(y)eiξ(x−y)dydξ.
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By taking l→∞ in (2), we get the identity

f(x) =
1

2π

ˆ ∞
−∞

ˆ ∞
−∞

eiξ(x−y)f(y)dydξ,

We break up this identity into two parts. For any function f on the real line, define
its Fourier transform to be

Ff(ξ) =

ˆ ∞
−∞

f(y)e−iξydy,

and, for any g, define its inverse Fourier transform to be

Gg(x) =
1

2π

ˆ ∞
−∞

g(ξ)eiξxdξ.

The Fourier and inverse Fourier transforms make sense as long as f and g decay fast at
infinity so that the improper integrals are finite.


